Innovation in the Design & Construction of a Concrete Overlay TERRA Pavement Conference February 14, 2013

Jerod P. Gross, Representing the CP Tech Center

Innovation Objectives

- Build a two lane PCC overlay under traffic
- Accelerate the construction where possible
- Construction innovations utilized
- Design innovations for future projects
- Potential cost savings in two vs. single lane overlay paving

Notes:

① Extend existing expansion joints in kind in new pavement.

TYPICAL CROSS SECTION
AND JOINTING DIAGRAM
PCC UNBONDED OVERLAY
WITH PARTIALLY PAVED SHOULDERS

- 1938 original pavement 18'-20' wide
- PCC widening unit
- Panel sizes, rebar for widening unit
- Importance of collecting pavement history, dates, thicknesses, PCI
- Talk to maintenance staff about pavement problem areas, special conditions

Overlay Communication Innovation

- Preconstruction conference (agencies/ contractor)
- Preconstruction conference (owner/ contractor/ nearby residents)
- Biweekly construction team meetings
- Pre-paving team meeting

Stage Work to Meet Both Public & Construction Goals Efficiently

- Stage I Pre-paving Items (patching, subdrainage, grading & ditches, erosion control, & survey control)
- Stage II Bridge approaches & paving notches, bridge railing, shoulder strengthening & transitions
- Stage III Milling & Intersection preparation
- Stage IV Paving, shouldering & pavement marking.

Subdrain Construction Innovation

- For most efficient project work, use a 2 mile work zone where possible
- Precut the top of trench to improve trencher production

US 18 Subdrain Installation Preparation

- Rock saw loosens the shoulder material to speed up trenching
- Encountered rubble tabulate on plans

Full Depth Patching Construction Innovation

- Verify estimates before final plan turn in
- Repair full panels and match joints to allow free movement
- Repair full pavement width transverse joints for best performance
- Encourage multiple 2 mile work zones for sawing & patch placement efficiency

US 18 Full Depth Patch Candidate

Isolate the patch and match with overlay joints

Transition Construction Innovation

- Design bridge approaches & transition pavements for machine paving
- Build shoulder strengthening units only on one side where pavement widening is employed
- Extend the TBR to accommodate the approach, transition & TBR approach lengths
- Develop transverse joints in strengthening to match those in the overlay

Mill shoulder strengthening to a depth of 8 inches below profile elevation

US 18 Bridge Approach Paving Plan

US 18 - Layout Recommendations

- Layout
 - Follow current IDOT Standards
 - Bridge approach, transition length, mainline
 - TBR length
 - Use widest section and build it!
 - Design bridge approaches & transition pavements for machine paving

Transition Construction Innovations

- Transition from the low point of bridge approach to the mainline: 1 inch to 25 foot
- Run-outs: 1 inch to 6 feet (temporary use)
- Use the bridge approach & transition slab to develop an approach vertical curve of 300 ft or greater (from bridge to mainline)
- Coordinate the bridge approach vertical curve with the pavement model profile.

US 18 Typical Bridge Approach/Transition Work

Note all the variable widths and separate pours

- No need to remove shoulder strengthening- Mill top 1.5"
- Set shoulder strengthening area to a depth of 8 inches below profile grade line

Surface Survey vs. Desired Concrete Yield Innovation

- Contract required a three line survey for profile establishment.
- Contract required 1/2" milling depth to remove surface treatment on west 2/3 of project.
- Project team conducted one mile test section on various line options & different cross section spacing (25' & 50') to assess yield and overruns
- Optimum yield was obtained with nine line profile at 50 ft. intervals before milling
 - Milling limits where 1/2" to 1 1/2" deep at centerline and 2% cross slope.
 - Yield changed from 26% average overrun to average of 6% after milling to new profile depth.

Survey – GPS / Total Stations

US 18 Longitudinal Joint Repair, Locate & Excavate

- Core these areas to confirm rehabilitation
- After milling, no void was encountered

Milling of HMA Innovations

- 7' wide mill to mill trench & existing widening
- Provide for a vertical edge
- Mill to given profile & cross slope to improve PCC yield
- Centerline pass by total stations (25 to 30 ft. per minute)
- Remaining removal width by sensor off milled surface (1/2 to 1 mile per day)

Notes:

① Extend existing expansion joints in kind in new pavement.

TYPICAL CROSS SECTION
AND JOINTING DIAGRAM
PCC UNBONDED OVERLAY
WITH PARTIALLY PAVED SHOULDERS

- Consider milling existing asphalt above widening unit
- Eliminates a joint
- Reduces bar length

Tie Steel Placement Innovations

- Develop methods for automating location of the 5' & 6' tie bars placed at 30" spacing
- Develop alternate methods of securing bars to HMA to resist turning of bar by concrete
- 18" over original pavement and 18" into new widening

US 18 Widening Bar Placement

- Bar marking device
- Note bars on working crack.
- Bars have also been secured to pavement with 2 part epoxy with success on other projects

Paving Operation Innovations

- Identify the project paving goals in terms of time & access requirements
- Require the contractor to develop the paving plan for agency approval
- Evaluate plans on the basis of contractor ability to deliver pavement, shoulders & markings in a continuous & timely manner

Paving Schedule

US 18 Haul Road Map

- Typically haul time is limited to 30 min. however an increased dosage of water reducer was approved giving an additional 15 min of haul time.
- The contractor developed a haul rote to get PCC to the paving area in 30-45 min.

Paving/Traffic Control Plan Innovations

- Encourage multiple work zones for each construction activity
- Shoulder & mark as maturity is reached
- Use the pilot car 24/7 to eliminate centerline wedge construction
- Encourage bridge transition & approach construction by mainline paving equipment
- Close only cross roads in paving area & only one paved cross road per 5 miles of construction area

US 18 Single Lane Paving With Through Traffic

US 18 Centerline Wedge Construction

US 18 Centerline Wedge Removal

Paving Operations Innovations

- Encourage stringless paving to ease thru & construction traffic
- Consider 5 days/mile construction limit on contract
- Consider two lane paving vs. one lane
- Consider a staged (rolling) detour

US 18 Paving Train

- Two total stations on same side of road for paver control
- Stringless system costs about \$40,000
- Truck proximity to widening tie bars special attention is needed on the bars to make sure they remain in place

Traffic Shift

PCC Overlay Paving

Peak hour local traffic at the paver

- Note the cone locations
- Note right side shoulder area needed for trucks to get around each other

US 18 Final Product

Future Design Innovations

- Reduce construction time to 5 days per mile
- Reduce plan volume from 94 to 40 pages or less
- Supply construction limitations & require the contractor to develop the paving plan & traffic control plan for review
- Mill out a portion of existing widening units to improve performance & reduce costs
- Consider two lane/closed road vs. one lane/ with through traffic for each overlay project

Thank you

Jerod P. Gross, PE, LEED AP BD+C jgross@snyder-associates.com 515-964-2020

